無人機在飛行過程中,通過其傳感器收集周邊環(huán)境的信息,內(nèi)蒙古無人機培訓測量距離從而做出相對應的動作指令,從而達到「避障」的作用。無人機的避障技術(shù)中為常見的是紅外線傳感器、超聲波傳感器、激光傳感器以及視覺傳感器。紅外線的應用我們并不陌生:從電視、空調(diào)的遙控器,到酒店的自動門,都是利用的紅外線的感應原理。而具體到無人機避障上的應用,紅外線避障的常見實現(xiàn)方式就是「三角測量原理」。
包含紅外發(fā)射器與CCD檢測器,紅外線發(fā)射器會發(fā)射紅外線,紅外線在物體上會發(fā)生反射,反射的光線被CCD檢測器接收之后,由于物體的距離D不同,反射角度也會不同,不同的反射角度會產(chǎn)生不同的偏移值L,知道了這些數(shù)據(jù)再經(jīng)過計算,就能得出物體的距離了。超聲波其實就是聲波的一種,因為頻率高于20kHz,所以人耳聽不見,并且指向性更強。
超聲波測距的原理比紅外線更加簡單,因為聲波遇到障礙物會反射,而聲波的速度已知,所以只需要知道發(fā)射到接收的時間差,就能輕松計算出測量距離,再結(jié)合發(fā)射器和接收器的距離,就能算出障礙物的實際距離。超聲波測距相比紅外測距,價格更加便宜,相應的感應速度和精度也遜色一些。同樣,由于需要主動發(fā)射聲波,所以對于太遠的障礙物,精度也會隨著聲波的衰減而降低,此外,內(nèi)蒙古無人機培訓多少錢對于海綿等吸收聲波的物體或者在大風干擾的情況下,超聲波將無法工作。激光避障與紅外線類似,也是發(fā)射激光然后接收。不過激光傳感器的測量方式很多樣,有類似紅外的三角測量,也有類似于超聲波的時間差+速度。
但無論是哪種方式,激光避障的精度、反饋速度、抗干擾能力和有效范圍都要明顯優(yōu)于紅外和超聲波。
但這里注意,不管是超聲波還是紅外、亦或是這里的激光測距,都只是一維傳感器,只能給出一個距離值,并不能完成對現(xiàn)實三維世界的感知。當然,由于激光的波束極窄,可以同時使用多束激光組成陣列雷達,近年來此技術(shù)逐漸成熟,多用于自動駕駛車輛上,但由于其體積龐大,價格昂貴,故不太適用于無人機。解決機器人如何“看”的問題,也就是大家常聽到的計算機視覺(Computer Vision)。其基礎(chǔ)在于如何能夠從二維的圖像中獲取三維信息,從而了解我們身處的這個三維世界。視覺識別通常來說可以包括一個或兩個攝像頭。單一的照片只具有二維信息,猶如2D電影,并無直接的空間感,只有靠我們自己依靠“物體遮擋、近大遠小”等生活經(jīng)驗腦補。故單一的攝像頭獲取到的信息及其有限,并不能直接得到我們想要的效果(當然能夠通過一些其他手段,輔助獲取,但是此項還不成熟,并沒有大規(guī)模驗證)。類比到機器視覺中,單個攝像頭的圖片信息無法獲取到場景中每個物體與鏡頭的距離關(guān)系,即缺少第三個維度。
雙目立體視覺猶如3D電影(左右眼看到的場景略有差異),能夠直接給人帶來強烈的空間臨場感。類比機器視覺,從單個攝像頭升級到兩個攝像頭,即立體視覺(Stereo Vision)能夠直接提供第三個維度的信息,即景深(depth),能夠更為簡單的獲取到三維信息。雙目視覺常見的例子就是我們的雙眼:我們之所以能夠準確的拿起面前的杯子、判斷汽車的遠近,都是因為雙眼的雙目立體視覺,而3D電影、VR眼鏡的發(fā)明,也都是雙目視覺的應用。
雙目視覺的基本原理是利用兩個平行的攝像頭進行拍攝,然后根據(jù)兩幅圖像之間的差異(視差),利用一系列復雜的算法計算出特定點的距離,當數(shù)據(jù)足夠時還能生成深度圖。紅外和超聲波技術(shù),因為都需要主動發(fā)射光線、聲波,所以對于反射的物體有要求,比如:紅外線會被黑色物體吸收,會穿透透明物體,還會被其他紅外線干擾;而超聲波會被海綿等物體吸收,也容易被槳葉氣流干擾。
而且,主動式測距還會產(chǎn)生兩臺機器相互干擾的問題。相比之下,雖然雙目視覺也對光線有要求,但是對于反射物的要求要低很多,兩臺機器同時使用也不會互相干擾,普適性更強。
重要的是,常見的紅外和超聲波目前都是單點測距,只能獲得特定方向上的距離數(shù)據(jù),內(nèi)蒙古無人機培訓而雙目視覺可以在小體積、低功耗的前提下,獲得眼前場景的比較高分辨率的深度圖,這就讓避障功能有了更多的發(fā)展空間,比如避障之后的智能飛行、路徑規(guī)劃等。
激光技術(shù)雖然也能實現(xiàn)類似雙目視覺的功能,但是受限于技術(shù)發(fā)展,目前的激光元件普遍價格貴、體積大、功耗高,應用在消費級無人機上既不經(jīng)濟也不實用。
